class IO::Buffer
IO::Buffer 是用于输入/输出的高效零拷贝缓冲区。以下是一些典型的用例:
-
使用
::new创建一个空缓冲区,使用copy或set_value、set_string填充缓冲区,使用get_string获取缓冲区,或者使用write直接将其写入文件。 -
使用
::for创建一个映射到某个字符串的缓冲区,然后它既可以用于使用get_string或get_value进行读取,也可以用于写入(写入也会更改源字符串)。 -
使用
::map创建一个映射到某个文件的缓冲区,然后它可用于读取和写入底层文件。 -
使用
::string创建一个固定大小的字符串,然后使用read读入该字符串,或者使用set_value修改它。
与字符串和文件内存的交互是通过高效的底层 C 机制(如 `memcpy`)执行的。
该类旨在成为实现更高级机制的实用工具,例如 Fiber::Scheduler#io_read 和 Fiber::Scheduler#io_write 以及解析二进制协议。
使用示例¶ ↑
空缓冲区
buffer = IO::Buffer.new(8) # create empty 8-byte buffer # => # #<IO::Buffer 0x0000555f5d1a5c50+8 INTERNAL> # ... buffer # => # <IO::Buffer 0x0000555f5d156ab0+8 INTERNAL> # 0x00000000 00 00 00 00 00 00 00 00 buffer.set_string('test', 2) # put there bytes of the "test" string, starting from offset 2 # => 4 buffer.get_string # get the result # => "\x00\x00test\x00\x00"
来自字符串的缓冲区
string = 'data' IO::Buffer.for(string) do |buffer| buffer # => # #<IO::Buffer 0x00007f3f02be9b18+4 SLICE> # 0x00000000 64 61 74 61 data buffer.get_string(2) # read content starting from offset 2 # => "ta" buffer.set_string('---', 1) # write content, starting from offset 1 # => 3 buffer # => # #<IO::Buffer 0x00007f3f02be9b18+4 SLICE> # 0x00000000 64 2d 2d 2d d--- string # original string changed, too # => "d---" end
来自文件的缓冲区
File.write('test.txt', 'test data') # => 9 buffer = IO::Buffer.map(File.open('test.txt')) # => # #<IO::Buffer 0x00007f3f0768c000+9 MAPPED IMMUTABLE> # ... buffer.get_string(5, 2) # read 2 bytes, starting from offset 5 # => "da" buffer.set_string('---', 1) # attempt to write # in `set_string': Buffer is not writable! (IO::Buffer::AccessError) # To create writable file-mapped buffer # Open file for read-write, pass size, offset, and flags=0 buffer = IO::Buffer.map(File.open('test.txt', 'r+'), 9, 0, 0) buffer.set_string('---', 1) # => 3 -- bytes written File.read('test.txt') # => "t--- data"
该类是实验性的,其接口可能会发生变化,特别是文件映射,将来可能会完全删除。
常量
- BIG_ENDIAN
-
指大端字节序,其中最高有效字节首先存储。有关详细信息,请参阅
get_value。 - DEFAULT_SIZE
-
默认缓冲区大小,通常是
PAGE_SIZE的(小)倍数。可以通过设置 RUBY_IO_BUFFER_DEFAULT_SIZE 环境变量显式指定。 - EXTERNAL
-
表示缓冲区中的内存由其他人拥有。有关详细信息,请参阅
external?。 - HOST_ENDIAN
-
指主机字节序。有关详细信息,请参阅
get_value。 - INTERNAL
-
表示缓冲区中的内存由缓冲区本身拥有。有关详细信息,请参阅
internal?。 - LITTLE_ENDIAN
-
指小端字节序,其中最低有效字节首先存储。有关详细信息,请参阅
get_value。 - LOCKED
- MAPPED
-
表示缓冲区中的内存由操作系统映射。有关详细信息,请参阅
mapped?。 - NETWORK_ENDIAN
-
指网络字节序,与大端字节序相同。有关详细信息,请参阅
get_value。 - PAGE_SIZE
-
操作系统页面大小。用于高效的页面对齐内存分配。
- PRIVATE
-
表示缓冲区中的内存以私有方式映射,并且更改不会复制到底层文件。有关详细信息,请参阅
private?。 - READONLY
-
表示缓冲区中的内存是只读的,尝试修改它将失败。有关详细信息,请参阅
readonly?。 - SHARED
-
表示缓冲区中的内存也被映射,以便可以与其他进程共享。有关详细信息,请参阅
shared?。
公共类方法
源代码
VALUE
rb_io_buffer_type_for(VALUE klass, VALUE string)
{
StringValue(string);
// If the string is frozen, both code paths are okay.
// If the string is not frozen, if a block is not given, it must be frozen.
if (rb_block_given_p()) {
struct io_buffer_for_yield_instance_arguments arguments = {
.klass = klass,
.string = string,
.instance = Qnil,
.flags = 0,
};
return rb_ensure(io_buffer_for_yield_instance, (VALUE)&arguments, io_buffer_for_yield_instance_ensure, (VALUE)&arguments);
}
else {
// This internally returns the source string if it's already frozen.
string = rb_str_tmp_frozen_acquire(string);
return io_buffer_for_make_instance(klass, string, RB_IO_BUFFER_READONLY);
}
}
从给定字符串的内存创建零拷贝 IO::Buffer。如果没有代码块,将高效地创建字符串的冻结内部副本并用作缓冲区源。如果提供了代码块,则缓冲区将直接与字符串的内部缓冲区关联,并且更新缓冲区将更新字符串。
在缓冲区上调用 free 之前(显式调用或通过垃圾收集器调用),源字符串将被锁定并且无法修改。
如果字符串被冻结,它将创建一个无法修改的只读缓冲区。如果字符串是共享的,则在使用代码块形式时可能会触发写入时复制。
string = 'test' buffer = IO::Buffer.for(string) buffer.external? #=> true buffer.get_string(0, 1) # => "t" string # => "best" buffer.resize(100) # in `resize': Cannot resize external buffer! (IO::Buffer::AccessError) IO::Buffer.for(string) do |buffer| buffer.set_string("T") string # => "Test" end
源代码
static VALUE
io_buffer_map(int argc, VALUE *argv, VALUE klass)
{
rb_check_arity(argc, 1, 4);
// We might like to handle a string path?
VALUE io = argv[0];
size_t size;
if (argc >= 2 && !RB_NIL_P(argv[1])) {
size = io_buffer_extract_size(argv[1]);
}
else {
rb_off_t file_size = rb_file_size(io);
// Compiler can confirm that we handled file_size < 0 case:
if (file_size < 0) {
rb_raise(rb_eArgError, "Invalid negative file size!");
}
// Here, we assume that file_size is positive:
else if ((uintmax_t)file_size > SIZE_MAX) {
rb_raise(rb_eArgError, "File larger than address space!");
}
else {
// This conversion should be safe:
size = (size_t)file_size;
}
}
// This is the file offset, not the buffer offset:
rb_off_t offset = 0;
if (argc >= 3) {
offset = NUM2OFFT(argv[2]);
}
enum rb_io_buffer_flags flags = 0;
if (argc >= 4) {
flags = io_buffer_extract_flags(argv[3]);
}
return rb_io_buffer_map(io, size, offset, flags);
}
通过内存映射文件,创建一个用于从 file 读取的 IO::Buffer。file_io 应该是一个 File 实例,以读取方式打开。
可以指定映射的可选 size 和 offset。
默认情况下,缓冲区将是不可变的(只读);要创建可写映射,您需要以读写模式打开文件,并显式传递不带 IO::Buffer::IMMUTABLE 的 flags 参数。
File.write('test.txt', 'test') buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::READONLY) # => #<IO::Buffer 0x00000001014a0000+4 MAPPED READONLY> buffer.readonly? # => true buffer.get_string # => "test" buffer.set_string('b', 0) # `set_string': Buffer is not writable! (IO::Buffer::AccessError) # create read/write mapping: length 4 bytes, offset 0, flags 0 buffer = IO::Buffer.map(File.open('test.txt', 'r+'), 4, 0) buffer.set_string('b', 0) # => 1 # Check it File.read('test.txt') # => "best"
请注意,某些操作系统可能在映射缓冲区和文件读取之间没有缓存一致性。
源代码
VALUE
rb_io_buffer_initialize(int argc, VALUE *argv, VALUE self)
{
io_buffer_experimental();
rb_check_arity(argc, 0, 2);
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
size_t size;
if (argc > 0) {
size = io_buffer_extract_size(argv[0]);
}
else {
size = RUBY_IO_BUFFER_DEFAULT_SIZE;
}
enum rb_io_buffer_flags flags = 0;
if (argc >= 2) {
flags = io_buffer_extract_flags(argv[1]);
}
else {
flags |= io_flags_for_size(size);
}
io_buffer_initialize(self, buffer, NULL, size, flags, Qnil);
return self;
}
创建一个新的、用零填充的 size 字节的 IO::Buffer。默认情况下,缓冲区将是内部的:直接分配的内存块。但是,如果请求的 size 大于操作系统特定的 IO::Buffer::PAGE_SIZE,则将使用虚拟内存机制分配缓冲区(Unix 上为匿名 mmap,Windows 上为 VirtualAlloc)。可以通过传递 IO::Buffer::MAPPED 作为第二个参数来强制执行此行为。
buffer = IO::Buffer.new(4) # => # #<IO::Buffer 0x000055b34497ea10+4 INTERNAL> # 0x00000000 00 00 00 00 .... buffer.get_string(0, 1) # => "\x00" buffer.set_string("test") buffer # => # #<IO::Buffer 0x000055b34497ea10+4 INTERNAL> # 0x00000000 74 65 73 74 test
源代码
static VALUE
io_buffer_size_of(VALUE klass, VALUE buffer_type)
{
if (RB_TYPE_P(buffer_type, T_ARRAY)) {
size_t total = 0;
for (long i = 0; i < RARRAY_LEN(buffer_type); i++) {
total += io_buffer_buffer_type_size(RB_SYM2ID(RARRAY_AREF(buffer_type, i)));
}
return SIZET2NUM(total);
}
else {
return SIZET2NUM(io_buffer_buffer_type_size(RB_SYM2ID(buffer_type)));
}
}
返回给定缓冲区类型(或多个类型)的大小(以字节为单位)。
IO::Buffer.size_of(:u32) # => 4 IO::Buffer.size_of([:u32, :u32]) # => 8
源代码
VALUE
rb_io_buffer_type_string(VALUE klass, VALUE length)
{
VALUE string = rb_str_new(NULL, RB_NUM2LONG(length));
struct io_buffer_for_yield_instance_arguments arguments = {
.klass = klass,
.string = string,
.instance = Qnil,
};
rb_ensure(io_buffer_for_yield_instance, (VALUE)&arguments, io_buffer_for_yield_instance_ensure, (VALUE)&arguments);
return string;
}
创建一个给定长度的新字符串,并将零拷贝 IO::Buffer 实例传递给代码块,该代码块使用该字符串作为源。代码块应写入缓冲区,并且将返回该字符串。
IO::Buffer.string(4) do |buffer| buffer.set_string("Ruby") end # => "Ruby"
公共实例方法
源代码
static VALUE
io_buffer_and(VALUE self, VALUE mask)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
struct rb_io_buffer *mask_buffer = NULL;
TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);
io_buffer_check_mask(mask_buffer);
VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
struct rb_io_buffer *output_buffer = NULL;
TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);
memory_and(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size);
return output;
}
通过将二进制 AND 运算应用于源,并使用 mask(根据需要重复),生成一个与源大小相同的新缓冲区。
IO::Buffer.for("1234567890") & IO::Buffer.for("\xFF\x00\x00\xFF") # => # #<IO::Buffer 0x00005589b2758480+4 INTERNAL> # 0x00000000 31 00 00 34 35 00 00 38 39 00 1..45..89.
源代码
static VALUE
rb_io_buffer_compare(VALUE self, VALUE other)
{
const void *ptr1, *ptr2;
size_t size1, size2;
rb_io_buffer_get_bytes_for_reading(self, &ptr1, &size1);
rb_io_buffer_get_bytes_for_reading(other, &ptr2, &size2);
if (size1 < size2) {
return RB_INT2NUM(-1);
}
if (size1 > size2) {
return RB_INT2NUM(1);
}
return RB_INT2NUM(memcmp(ptr1, ptr2, size1));
}
使用 memcmp 比较缓冲区的大小和它们引用的内存的精确内容。
源代码
static VALUE
io_buffer_xor(VALUE self, VALUE mask)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
struct rb_io_buffer *mask_buffer = NULL;
TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);
io_buffer_check_mask(mask_buffer);
VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
struct rb_io_buffer *output_buffer = NULL;
TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);
memory_xor(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size);
return output;
}
通过将二进制 XOR 运算应用于源,并使用 mask(根据需要重复),生成一个与源大小相同的新缓冲区。
IO::Buffer.for("1234567890") ^ IO::Buffer.for("\xFF\x00\x00\xFF") # => # #<IO::Buffer 0x000055a2d5d10480+10 INTERNAL> # 0x00000000 ce 32 33 cb ca 36 37 c7 c6 30 .23..67..0
源代码
static VALUE
io_buffer_or(VALUE self, VALUE mask)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
struct rb_io_buffer *mask_buffer = NULL;
TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);
io_buffer_check_mask(mask_buffer);
VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
struct rb_io_buffer *output_buffer = NULL;
TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);
memory_or(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size);
return output;
}
通过将二进制 OR 运算应用于源,并使用 mask(根据需要重复),生成一个与源大小相同的新缓冲区。
IO::Buffer.for("1234567890") | IO::Buffer.for("\xFF\x00\x00\xFF") # => # #<IO::Buffer 0x0000561785ae3480+10 INTERNAL> # 0x00000000 ff 32 33 ff ff 36 37 ff ff 30 .23..67..0
源代码
static VALUE
io_buffer_not(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
struct rb_io_buffer *output_buffer = NULL;
TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);
memory_not(output_buffer->base, buffer->base, buffer->size);
return output;
}
通过将二进制 NOT 运算应用于源,生成一个与源大小相同的新缓冲区。
~IO::Buffer.for("1234567890") # => # #<IO::Buffer 0x000055a5ac42f120+10 INTERNAL> # 0x00000000 ce cd cc cb ca c9 c8 c7 c6 cf ..........
源代码
static VALUE
io_buffer_and_inplace(VALUE self, VALUE mask)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
struct rb_io_buffer *mask_buffer = NULL;
TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);
io_buffer_check_mask(mask_buffer);
io_buffer_check_overlaps(buffer, mask_buffer);
void *base;
size_t size;
io_buffer_get_bytes_for_writing(buffer, &base, &size);
memory_and_inplace(base, size, mask_buffer->base, mask_buffer->size);
return self;
}
通过将二进制 AND 运算应用于源,并使用 mask(根据需要重复),就地修改源缓冲区。
source = IO::Buffer.for("1234567890").dup # Make a read/write copy. # => # #<IO::Buffer 0x000056307a0d0c20+10 INTERNAL> # 0x00000000 31 32 33 34 35 36 37 38 39 30 1234567890 source.and!(IO::Buffer.for("\xFF\x00\x00\xFF")) # => # #<IO::Buffer 0x000056307a0d0c20+10 INTERNAL> # 0x00000000 31 00 00 34 35 00 00 38 39 00 1..45..89.
源代码
static VALUE
io_buffer_clear(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 0, 3);
uint8_t value = 0;
if (argc >= 1) {
value = NUM2UINT(argv[0]);
}
size_t offset, length;
io_buffer_extract_offset_length(self, argc-1, argv+1, &offset, &length);
rb_io_buffer_clear(self, value, offset, length);
return self;
}
使用 value 填充缓冲区,从 offset 开始,持续 length 个字节。
buffer = IO::Buffer.for('test').dup # => # <IO::Buffer 0x00007fca40087c38+4 INTERNAL> # 0x00000000 74 65 73 74 test buffer.clear # => # <IO::Buffer 0x00007fca40087c38+4 INTERNAL> # 0x00000000 00 00 00 00 .... buf.clear(1) # fill with 1 # => # <IO::Buffer 0x00007fca40087c38+4 INTERNAL> # 0x00000000 01 01 01 01 .... buffer.clear(2, 1, 2) # fill with 2, starting from offset 1, for 2 bytes # => # <IO::Buffer 0x00007fca40087c38+4 INTERNAL> # 0x00000000 01 02 02 01 .... buffer.clear(2, 1) # fill with 2, starting from offset 1 # => # <IO::Buffer 0x00007fca40087c38+4 INTERNAL> # 0x00000000 01 02 02 02 ....
源代码
static VALUE
io_buffer_copy(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 1, 4);
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
VALUE source = argv[0];
const void *source_base;
size_t source_size;
rb_io_buffer_get_bytes_for_reading(source, &source_base, &source_size);
return io_buffer_copy_from(buffer, source_base, source_size, argc-1, argv+1);
}
使用 memmove 从源 IO::Buffer 高效地复制到缓冲区中的 offset 位置。对于复制 String 实例,请参阅 set_string。
buffer = IO::Buffer.new(32) # => # #<IO::Buffer 0x0000555f5ca22520+32 INTERNAL> # 0x00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ # 0x00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ * buffer.copy(IO::Buffer.for("test"), 8) # => 4 -- size of buffer copied buffer # => # #<IO::Buffer 0x0000555f5cf8fe40+32 INTERNAL> # 0x00000000 00 00 00 00 00 00 00 00 74 65 73 74 00 00 00 00 ........test.... # 0x00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ *
copy 可用于将缓冲区放入与缓冲区关联的字符串中
string = "data: " # => "data: " buffer = IO::Buffer.for(string) do |buffer| buffer.copy(IO::Buffer.for("test"), 5) end # => 4 string # => "data:test"
尝试复制到只读缓冲区将失败
File.write('test.txt', 'test') buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::READONLY) buffer.copy(IO::Buffer.for("test"), 8) # in `copy': Buffer is not writable! (IO::Buffer::AccessError)
有关创建可变文件映射的详细信息,请参阅 ::map,这将起作用
buffer = IO::Buffer.map(File.open('test.txt', 'r+')) buffer.copy(IO::Buffer.for("boom"), 0) # => 4 File.read('test.txt') # => "boom"
尝试复制将需要超出缓冲区边界的位置的缓冲区将失败
buffer = IO::Buffer.new(2) buffer.copy(IO::Buffer.for('test'), 0) # in `copy': Specified offset+length is bigger than the buffer size! (ArgumentError)
在相互重叠的内存区域之间进行复制是安全的。在这种情况下,数据的复制方式就像先将数据从源缓冲区复制到临时缓冲区,然后再从临时缓冲区复制到目标缓冲区。
buffer = IO::Buffer.new(10) buffer.set_string("0123456789") buffer.copy(buffer, 3, 7) # => 7 buffer # => # #<IO::Buffer 0x000056494f8ce440+10 INTERNAL> # 0x00000000 30 31 32 30 31 32 33 34 35 36 0120123456
源代码
static VALUE
io_buffer_each(int argc, VALUE *argv, VALUE self)
{
RETURN_ENUMERATOR_KW(self, argc, argv, RB_NO_KEYWORDS);
const void *base;
size_t size;
rb_io_buffer_get_bytes_for_reading(self, &base, &size);
ID buffer_type;
if (argc >= 1) {
buffer_type = RB_SYM2ID(argv[0]);
}
else {
buffer_type = RB_IO_BUFFER_DATA_TYPE_U8;
}
size_t offset, count;
io_buffer_extract_offset_count(buffer_type, size, argc-1, argv+1, &offset, &count);
for (size_t i = 0; i < count; i++) {
size_t current_offset = offset;
VALUE value = rb_io_buffer_get_value(base, size, buffer_type, &offset);
rb_yield_values(2, SIZET2NUM(current_offset), value);
}
return self;
}
迭代缓冲区,从 offset 开始生成每个 buffer_type 的 value。
如果给出了 count,则仅生成 count 个值。
IO::Buffer.for("Hello World").each(:U8, 2, 2) do |offset, value| puts "#{offset}: #{value}" end # 2: 108 # 3: 108
源代码
static VALUE
io_buffer_each_byte(int argc, VALUE *argv, VALUE self)
{
RETURN_ENUMERATOR_KW(self, argc, argv, RB_NO_KEYWORDS);
const void *base;
size_t size;
rb_io_buffer_get_bytes_for_reading(self, &base, &size);
size_t offset, count;
io_buffer_extract_offset_count(RB_IO_BUFFER_DATA_TYPE_U8, size, argc-1, argv+1, &offset, &count);
for (size_t i = 0; i < count; i++) {
unsigned char *value = (unsigned char *)base + i + offset;
rb_yield(RB_INT2FIX(*value));
}
return self;
}
迭代缓冲区,从 offset 开始生成每个字节。
如果给出了 count,则仅生成 count 个字节。
IO::Buffer.for("Hello World").each_byte(2, 2) do |offset, byte| puts "#{offset}: #{byte}" end # 2: 108 # 3: 108
源代码
源代码
static VALUE
rb_io_buffer_external_p(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
return RBOOL(buffer->flags & RB_IO_BUFFER_EXTERNAL);
}
如果缓冲区引用不是由缓冲区本身分配或映射的内存,则该缓冲区是外部的。
使用 ::for 创建的缓冲区具有对字符串内存的外部引用。
无法调整外部缓冲区的大小。
源代码
VALUE
rb_io_buffer_free(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
if (buffer->flags & RB_IO_BUFFER_LOCKED) {
rb_raise(rb_eIOBufferLockedError, "Buffer is locked!");
}
io_buffer_free(buffer);
return self;
}
如果缓冲区引用了内存,请将其释放回操作系统。
-
对于已映射的缓冲区(例如,来自文件):取消映射。
-
对于从头创建的缓冲区:释放内存。
-
对于从字符串创建的缓冲区:取消关联。
缓冲区释放后,不能再对其执行任何操作。
您可以调整已释放的缓冲区的大小以重新分配它。
buffer = IO::Buffer.for('test') buffer.free # => #<IO::Buffer 0x0000000000000000+0 NULL> buffer.get_value(:U8, 0) # in `get_value': The buffer is not allocated! (IO::Buffer::AllocationError) buffer.get_string # in `get_string': The buffer is not allocated! (IO::Buffer::AllocationError) buffer.null? # => true
源代码
static VALUE
io_buffer_get_string(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 0, 3);
size_t offset, length;
struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length);
const void *base;
size_t size;
io_buffer_get_bytes_for_reading(buffer, &base, &size);
rb_encoding *encoding;
if (argc >= 3) {
encoding = rb_find_encoding(argv[2]);
}
else {
encoding = rb_ascii8bit_encoding();
}
io_buffer_validate_range(buffer, offset, length);
return rb_enc_str_new((const char*)base + offset, length, encoding);
}
以指定的 encoding 将缓冲区的一部分或全部读取到字符串中。如果未提供编码,则使用 Encoding::BINARY。
buffer = IO::Buffer.for('test') buffer.get_string # => "test" buffer.get_string(2) # => "st" buffer.get_string(2, 1) # => "s"
源代码
static VALUE
io_buffer_get_value(VALUE self, VALUE type, VALUE _offset)
{
const void *base;
size_t size;
size_t offset = io_buffer_extract_offset(_offset);
rb_io_buffer_get_bytes_for_reading(self, &base, &size);
return rb_io_buffer_get_value(base, size, RB_SYM2ID(type), &offset);
}
从缓冲区的 offset 位置读取 type 类型的值。buffer_type 应该是以下符号之一
-
:U8: 无符号整数,1 字节 -
:S8: 有符号整数,1 字节 -
:u16: 无符号整数,2 字节,小端序 -
:U16: 无符号整数,2 字节,大端序 -
:s16: 有符号整数,2 字节,小端序 -
:S16: 有符号整数,2 字节,大端序 -
:u32: 无符号整数,4 字节,小端序 -
:U32: 无符号整数,4 字节,大端序 -
:s32: 有符号整数,4 字节,小端序 -
:S32: 有符号整数,4 字节,大端序 -
:u64: 无符号整数,8 字节,小端序 -
:U64: 无符号整数,8 字节,大端序 -
:s64: 有符号整数,8 字节,小端序 -
:S64: 有符号整数,8 字节,大端序 -
:f32: 单精度浮点数,4 字节,小端序 -
:F32: 单精度浮点数,4 字节,大端序 -
:f64: 双精度浮点数,8 字节,小端序 -
:F64: 双精度浮点数,8 字节,大端序
缓冲区类型特别指存储在缓冲区中的二进制缓冲区类型。例如,:u32 缓冲区类型是小端序格式的 32 位无符号整数。
string = [1.5].pack('f') # => "\x00\x00\xC0?" IO::Buffer.for(string).get_value(:f32, 0) # => 1.5
源代码
static VALUE
io_buffer_get_values(VALUE self, VALUE buffer_types, VALUE _offset)
{
size_t offset = io_buffer_extract_offset(_offset);
const void *base;
size_t size;
rb_io_buffer_get_bytes_for_reading(self, &base, &size);
if (!RB_TYPE_P(buffer_types, T_ARRAY)) {
rb_raise(rb_eArgError, "Argument buffer_types should be an array!");
}
VALUE array = rb_ary_new_capa(RARRAY_LEN(buffer_types));
for (long i = 0; i < RARRAY_LEN(buffer_types); i++) {
VALUE type = rb_ary_entry(buffer_types, i);
VALUE value = rb_io_buffer_get_value(base, size, RB_SYM2ID(type), &offset);
rb_ary_push(array, value);
}
return array;
}
类似于 get_value,但它可以处理多种缓冲区类型并返回一个值数组。
string = [1.5, 2.5].pack('ff') IO::Buffer.for(string).get_values([:f32, :f32], 0) # => [1.5, 2.5]
源代码
static VALUE
rb_io_buffer_hexdump(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 0, 3);
size_t offset, length;
struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length);
size_t width = RB_IO_BUFFER_HEXDUMP_DEFAULT_WIDTH;
if (argc >= 3) {
width = io_buffer_extract_width(argv[2], 1);
}
// This may raise an exception if the offset/length is invalid:
io_buffer_validate_range(buffer, offset, length);
VALUE result = Qnil;
if (io_buffer_validate(buffer) && buffer->base) {
result = rb_str_buf_new(io_buffer_hexdump_output_size(width, length, 1));
io_buffer_hexdump(result, width, buffer->base, offset+length, offset, 1);
}
return result;
}
返回缓冲区的易于阅读的字符串表示形式。确切格式可能会更改。
buffer = IO::Buffer.for("Hello World") puts buffer.hexdump # 0x00000000 48 65 6c 6c 6f 20 57 6f 72 6c 64 Hello World
由于缓冲区通常相当大,您可能需要通过指定偏移量和长度来限制输出。
puts buffer.hexdump(6, 5) # 0x00000006 57 6f 72 6c 64 World
源代码
static VALUE
rb_io_buffer_initialize_copy(VALUE self, VALUE source)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
const void *source_base;
size_t source_size;
rb_io_buffer_get_bytes_for_reading(source, &source_base, &source_size);
io_buffer_initialize(self, buffer, NULL, source_size, io_flags_for_size(source_size), Qnil);
return io_buffer_copy_from(buffer, source_base, source_size, 0, NULL);
}
创建源缓冲区的内部副本。对副本的更新不会影响源缓冲区。
source = IO::Buffer.for("Hello World") # => # #<IO::Buffer 0x00007fd598466830+11 EXTERNAL READONLY SLICE> # 0x00000000 48 65 6c 6c 6f 20 57 6f 72 6c 64 Hello World buffer = source.dup # => # #<IO::Buffer 0x0000558cbec03320+11 INTERNAL> # 0x00000000 48 65 6c 6c 6f 20 57 6f 72 6c 64 Hello World
源代码
VALUE
rb_io_buffer_inspect(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
VALUE result = rb_io_buffer_to_s(self);
if (io_buffer_validate(buffer)) {
// Limit the maximum size generated by inspect:
size_t size = buffer->size;
int clamped = 0;
if (size > RB_IO_BUFFER_INSPECT_HEXDUMP_MAXIMUM_SIZE) {
size = RB_IO_BUFFER_INSPECT_HEXDUMP_MAXIMUM_SIZE;
clamped = 1;
}
io_buffer_hexdump(result, RB_IO_BUFFER_INSPECT_HEXDUMP_WIDTH, buffer->base, size, 0, 0);
if (clamped) {
rb_str_catf(result, "\n(and %" PRIuSIZE " more bytes not printed)", buffer->size - size);
}
}
return result;
}
检查缓冲区并报告有关其内部状态的有用信息。只有缓冲区的一小部分会以十六进制转储格式显示。
buffer = IO::Buffer.for("Hello World") puts buffer.inspect # #<IO::Buffer 0x000000010198ccd8+11 EXTERNAL READONLY SLICE> # 0x00000000 48 65 6c 6c 6f 20 57 6f 72 6c 64 Hello World
源代码
static VALUE
rb_io_buffer_internal_p(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
return RBOOL(buffer->flags & RB_IO_BUFFER_INTERNAL);
}
如果缓冲区是内部的,意味着它引用了缓冲区自身分配的内存。
内部缓冲区不与任何外部内存(例如字符串)或文件映射关联。
内部缓冲区使用 ::new 创建,并且当请求的大小小于 IO::Buffer::PAGE_SIZE 并且在创建时未请求映射时,它是默认值。
内部缓冲区可以调整大小,并且此类操作通常会使所有切片无效,但不总是如此。
源代码
VALUE
rb_io_buffer_locked(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
if (buffer->flags & RB_IO_BUFFER_LOCKED) {
rb_raise(rb_eIOBufferLockedError, "Buffer already locked!");
}
buffer->flags |= RB_IO_BUFFER_LOCKED;
VALUE result = rb_yield(self);
buffer->flags &= ~RB_IO_BUFFER_LOCKED;
return result;
}
允许以独占方式处理缓冲区,以确保并发安全。在执行块时,该缓冲区被认为是锁定的,并且没有其他代码可以进入该锁。此外,无法使用 resize 或 free 更改锁定的缓冲区。
锁定不是线程安全的。它被设计为非阻塞系统调用周围的安全网。您只能使用适当的同步技术在线程之间共享缓冲区。
buffer = IO::Buffer.new(4) buffer.locked? #=> false Fiber.schedule do buffer.locked do buffer.write(io) # theoretical system call interface end end Fiber.schedule do # in `locked': Buffer already locked! (IO::Buffer::LockedError) buffer.locked do buffer.set_string("test", 0) end end
源代码
static VALUE
rb_io_buffer_locked_p(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
return RBOOL(buffer->flags & RB_IO_BUFFER_LOCKED);
}
如果缓冲区是锁定的,意味着它位于 locked 块执行中。锁定的缓冲区无法调整大小或释放,并且无法在其上获取另一个锁。
锁定不是线程安全的,但它是一种语义,用于确保缓冲区在被系统调用使用时不会移动。
buffer.locked do buffer.write(io) # theoretical system call interface end
源代码
static VALUE
rb_io_buffer_mapped_p(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
return RBOOL(buffer->flags & RB_IO_BUFFER_MAPPED);
}
如果缓冲区是映射的,意味着它引用了缓冲区映射的内存。
如果通过带有 IO::Buffer::MAPPED 标志的 ::new 创建,或者大小至少为 IO::Buffer::PAGE_SIZE,则映射的缓冲区是匿名的,如果使用 ::map 创建,则映射的缓冲区由文件支持。
通常可以调整映射的缓冲区的大小,并且此类操作通常会使所有切片无效,但不总是如此。
源代码
static VALUE
io_buffer_not_inplace(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
void *base;
size_t size;
io_buffer_get_bytes_for_writing(buffer, &base, &size);
memory_not_inplace(base, size);
return self;
}
通过对源应用二进制 NOT 操作来就地修改源缓冲区。
source = IO::Buffer.for("1234567890").dup # Make a read/write copy. # => # #<IO::Buffer 0x000056307a33a450+10 INTERNAL> # 0x00000000 31 32 33 34 35 36 37 38 39 30 1234567890 source.not! # => # #<IO::Buffer 0x000056307a33a450+10 INTERNAL> # 0x00000000 ce cd cc cb ca c9 c8 c7 c6 cf ..........
源代码
static VALUE
rb_io_buffer_null_p(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
return RBOOL(buffer->base == NULL);
}
如果缓冲区已使用 free 释放,使用 transfer 传输,或者从未分配过。
buffer = IO::Buffer.new(0) buffer.null? #=> true buffer = IO::Buffer.new(4) buffer.null? #=> false buffer.free buffer.null? #=> true
源代码
static VALUE
io_buffer_or_inplace(VALUE self, VALUE mask)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
struct rb_io_buffer *mask_buffer = NULL;
TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);
io_buffer_check_mask(mask_buffer);
io_buffer_check_overlaps(buffer, mask_buffer);
void *base;
size_t size;
io_buffer_get_bytes_for_writing(buffer, &base, &size);
memory_or_inplace(base, size, mask_buffer->base, mask_buffer->size);
return self;
}
通过对源应用二进制 OR 操作来就地修改源缓冲区,使用掩码,并根据需要重复。
source = IO::Buffer.for("1234567890").dup # Make a read/write copy. # => # #<IO::Buffer 0x000056307a272350+10 INTERNAL> # 0x00000000 31 32 33 34 35 36 37 38 39 30 1234567890 source.or!(IO::Buffer.for("\xFF\x00\x00\xFF")) # => # #<IO::Buffer 0x000056307a272350+10 INTERNAL> # 0x00000000 ff 32 33 ff ff 36 37 ff ff 30 .23..67..0
源代码
static VALUE
io_buffer_pread(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 2, 4);
VALUE io = argv[0];
rb_off_t from = NUM2OFFT(argv[1]);
size_t length, offset;
io_buffer_extract_length_offset(self, argc-2, argv+2, &length, &offset);
return rb_io_buffer_pread(self, io, from, length, offset);
}
从指定的 from 位置开始,从 io 中读取至少 length 个字节,并将其放入从 offset 开始的缓冲区中。如果发生错误,则返回 -errno。
如果未给出 length 或为 nil,则默认为缓冲区大小减去偏移量,即整个缓冲区。
如果 length 为零,则将只发生一次 pread 操作。
如果未给出 offset,则默认为零,即缓冲区的开头。
IO::Buffer.for('test') do |buffer| p buffer # => # <IO::Buffer 0x00007fca40087c38+4 SLICE> # 0x00000000 74 65 73 74 test # take 2 bytes from the beginning of urandom, # put them in buffer starting from position 2 buffer.pread(File.open('/dev/urandom', 'rb'), 0, 2, 2) p buffer # => # <IO::Buffer 0x00007f3bc65f2a58+4 EXTERNAL SLICE> # 0x00000000 05 35 73 74 te.5 end
源代码
static VALUE
rb_io_buffer_private_p(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
return RBOOL(buffer->flags & RB_IO_BUFFER_PRIVATE);
}
如果缓冲区是私有的,意味着对缓冲区的修改不会复制到基础文件映射中。
# Create a test file: File.write('test.txt', 'test') # Create a private mapping from the given file. Note that the file here # is opened in read-only mode, but it doesn't matter due to the private # mapping: buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::PRIVATE) # => #<IO::Buffer 0x00007fce63f11000+4 MAPPED PRIVATE> # Write to the buffer (invoking CoW of the underlying file buffer): buffer.set_string('b', 0) # => 1 # The file itself is not modified: File.read('test.txt') # => "test"
源代码
static VALUE
io_buffer_pwrite(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 2, 4);
VALUE io = argv[0];
rb_off_t from = NUM2OFFT(argv[1]);
size_t length, offset;
io_buffer_extract_length_offset(self, argc-2, argv+2, &length, &offset);
return rb_io_buffer_pwrite(self, io, from, length, offset);
}
从 offset 开始,将缓冲区中的至少 length 个字节写入从指定的 from 位置开始的 io 中。如果发生错误,则返回 -errno。
如果未给出 length 或为 nil,则默认为缓冲区大小减去偏移量,即整个缓冲区。
如果 length 为零,则将只发生一次 pwrite 操作。
如果未给出 offset,则默认为零,即缓冲区的开头。
如果 from 位置超出文件末尾,则将使用 null(0 值)字节填充间隙。
out = File.open('output.txt', File::RDWR) # open for read/write, no truncation IO::Buffer.for('1234567').pwrite(out, 2, 3, 1)
这导致 234(3 个字节,从位置 1 开始)被写入到 output.txt 中,从文件位置 2 开始。
源代码
static VALUE
io_buffer_read(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 1, 3);
VALUE io = argv[0];
size_t length, offset;
io_buffer_extract_length_offset(self, argc-1, argv+1, &length, &offset);
return rb_io_buffer_read(self, io, length, offset);
}
从 io 中读取至少 length 个字节,并将其放入从 offset 开始的缓冲区中。如果发生错误,则返回 -errno。
如果未给出 length 或为 nil,则默认为缓冲区大小减去偏移量,即整个缓冲区。
如果 length 为零,则将只发生一次 read 操作。
如果未给出 offset,则默认为零,即缓冲区的开头。
IO::Buffer.for('test') do |buffer| p buffer # => # <IO::Buffer 0x00007fca40087c38+4 SLICE> # 0x00000000 74 65 73 74 test buffer.read(File.open('/dev/urandom', 'rb'), 2) p buffer # => # <IO::Buffer 0x00007f3bc65f2a58+4 EXTERNAL SLICE> # 0x00000000 05 35 73 74 .5st end
源代码
static VALUE
io_buffer_readonly_p(VALUE self)
{
return RBOOL(rb_io_buffer_readonly_p(self));
}
如果缓冲区是只读的,意味着无法使用 set_value、set_string 或 copy 以及类似方法修改缓冲区。
冻结的字符串和只读文件会创建只读缓冲区。
源代码
static VALUE
io_buffer_resize(VALUE self, VALUE size)
{
rb_io_buffer_resize(self, io_buffer_extract_size(size));
return self;
}
将缓冲区的大小调整为 new_size 字节,同时保留其内容。根据旧大小和新大小,与缓冲区关联的内存区域可能会扩展,或者在不同的地址重新分配,并复制内容。
buffer = IO::Buffer.new(4) buffer.set_string("test", 0) buffer.resize(8) # resize to 8 bytes # => # #<IO::Buffer 0x0000555f5d1a1630+8 INTERNAL> # 0x00000000 74 65 73 74 00 00 00 00 test....
无法调整外部缓冲区(使用 ::for 创建)和锁定的缓冲区的大小。
源代码
static VALUE
io_buffer_set_string(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 1, 4);
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
VALUE string = rb_str_to_str(argv[0]);
const void *source_base = RSTRING_PTR(string);
size_t source_size = RSTRING_LEN(string);
return io_buffer_copy_from(buffer, source_base, source_size, argc-1, argv+1);
}
使用 memmove,从源 String 中高效地复制到缓冲区的 offset 位置。
buf = IO::Buffer.new(8) # => # #<IO::Buffer 0x0000557412714a20+8 INTERNAL> # 0x00000000 00 00 00 00 00 00 00 00 ........ # set buffer starting from offset 1, take 2 bytes starting from string's # second buf.set_string('test', 1, 2, 1) # => 2 buf # => # #<IO::Buffer 0x0000557412714a20+8 INTERNAL> # 0x00000000 00 65 73 00 00 00 00 00 .es.....
另请参阅 copy,其中提供了有关如何使用缓冲区写入来更改关联的字符串和文件的示例。
源代码
static VALUE
io_buffer_set_value(VALUE self, VALUE type, VALUE _offset, VALUE value)
{
void *base;
size_t size;
size_t offset = io_buffer_extract_offset(_offset);
rb_io_buffer_get_bytes_for_writing(self, &base, &size);
rb_io_buffer_set_value(base, size, RB_SYM2ID(type), &offset, value);
return SIZET2NUM(offset);
}
在缓冲区的 offset 位置写入 type 类型的 value。type 应该是 get_value 中描述的符号之一。
buffer = IO::Buffer.new(8) # => # #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL> # 0x00000000 00 00 00 00 00 00 00 00 buffer.set_value(:U8, 1, 111) # => 1 buffer # => # #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL> # 0x00000000 00 6f 00 00 00 00 00 00 .o......
请注意,如果 type 是整数并且 value 是 Float,则会执行隐式截断。
buffer = IO::Buffer.new(8) buffer.set_value(:U32, 0, 2.5) buffer # => # #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL> # 0x00000000 00 00 00 02 00 00 00 00 # ^^ the same as if we'd pass just integer 2
源代码
static VALUE
io_buffer_set_values(VALUE self, VALUE buffer_types, VALUE _offset, VALUE values)
{
if (!RB_TYPE_P(buffer_types, T_ARRAY)) {
rb_raise(rb_eArgError, "Argument buffer_types should be an array!");
}
if (!RB_TYPE_P(values, T_ARRAY)) {
rb_raise(rb_eArgError, "Argument values should be an array!");
}
if (RARRAY_LEN(buffer_types) != RARRAY_LEN(values)) {
rb_raise(rb_eArgError, "Argument buffer_types and values should have the same length!");
}
size_t offset = io_buffer_extract_offset(_offset);
void *base;
size_t size;
rb_io_buffer_get_bytes_for_writing(self, &base, &size);
for (long i = 0; i < RARRAY_LEN(buffer_types); i++) {
VALUE type = rb_ary_entry(buffer_types, i);
VALUE value = rb_ary_entry(values, i);
rb_io_buffer_set_value(base, size, RB_SYM2ID(type), &offset, value);
}
return SIZET2NUM(offset);
}
在缓冲区的 offset 位置写入 buffer_types 类型的 values。buffer_types 应该是一个符号数组,如 get_value 中所述。values 应该是一个要写入的值数组。
buffer = IO::Buffer.new(8) buffer.set_values([:U8, :U16], 0, [1, 2]) buffer # => # #<IO::Buffer 0x696f717561746978+8 INTERNAL> # 0x00000000 01 00 02 00 00 00 00 00 ........
源代码
源代码
static VALUE
io_buffer_slice(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 0, 2);
size_t offset, length;
struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length);
return rb_io_buffer_slice(buffer, self, offset, length);
}
生成另一个 IO::Buffer,它是当前缓冲区的一个切片(或视图),从 offset 字节开始,持续 length 字节。
切片操作是在不复制内存的情况下完成的,并且切片会继续与原始缓冲区的源(字符串或文件)关联(如果有)。
如果未给出偏移量,则它将为零。如果偏移量为负数,则会引发 ArgumentError。
如果未给出长度,则切片的长度将与原始缓冲区减去指定偏移量的长度相同。如果长度为负数,则会引发 ArgumentError。
如果 offset+length 超出当前缓冲区的范围,则引发 RuntimeError。
string = 'test' buffer = IO::Buffer.for(string).dup slice = buffer.slice # => # #<IO::Buffer 0x0000000108338e68+4 SLICE> # 0x00000000 74 65 73 74 test buffer.slice(2) # => # #<IO::Buffer 0x0000000108338e6a+2 SLICE> # 0x00000000 73 74 st slice = buffer.slice(1, 2) # => # #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE> # 0x00000000 65 73 es # Put "o" into 0s position of the slice slice.set_string('o', 0) slice # => # #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE> # 0x00000000 6f 73 os # it is also visible at position 1 of the original buffer buffer # => # #<IO::Buffer 0x00007fc3d31e2d80+4 INTERNAL> # 0x00000000 74 6f 73 74 tost
源代码
VALUE
rb_io_buffer_to_s(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
VALUE result = rb_str_new_cstr("#<");
rb_str_append(result, rb_class_name(CLASS_OF(self)));
rb_str_catf(result, " %p+%"PRIdSIZE, buffer->base, buffer->size);
if (buffer->base == NULL) {
rb_str_cat2(result, " NULL");
}
if (buffer->flags & RB_IO_BUFFER_EXTERNAL) {
rb_str_cat2(result, " EXTERNAL");
}
if (buffer->flags & RB_IO_BUFFER_INTERNAL) {
rb_str_cat2(result, " INTERNAL");
}
if (buffer->flags & RB_IO_BUFFER_MAPPED) {
rb_str_cat2(result, " MAPPED");
}
if (buffer->flags & RB_IO_BUFFER_FILE) {
rb_str_cat2(result, " FILE");
}
if (buffer->flags & RB_IO_BUFFER_SHARED) {
rb_str_cat2(result, " SHARED");
}
if (buffer->flags & RB_IO_BUFFER_LOCKED) {
rb_str_cat2(result, " LOCKED");
}
if (buffer->flags & RB_IO_BUFFER_PRIVATE) {
rb_str_cat2(result, " PRIVATE");
}
if (buffer->flags & RB_IO_BUFFER_READONLY) {
rb_str_cat2(result, " READONLY");
}
if (buffer->source != Qnil) {
rb_str_cat2(result, " SLICE");
}
if (!io_buffer_validate(buffer)) {
rb_str_cat2(result, " INVALID");
}
return rb_str_cat2(result, ">");
}
缓冲区的简短表示形式。它包括地址、大小和符号标志。此格式可能会更改。
puts IO::Buffer.new(4) # uses to_s internally # #<IO::Buffer 0x000055769f41b1a0+4 INTERNAL>
源代码
VALUE
rb_io_buffer_transfer(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
if (buffer->flags & RB_IO_BUFFER_LOCKED) {
rb_raise(rb_eIOBufferLockedError, "Cannot transfer ownership of locked buffer!");
}
VALUE instance = rb_io_buffer_type_allocate(rb_class_of(self));
struct rb_io_buffer *transferred;
TypedData_Get_Struct(instance, struct rb_io_buffer, &rb_io_buffer_type, transferred);
*transferred = *buffer;
io_buffer_zero(buffer);
return instance;
}
将底层内存的所有权转移到新缓冲区,导致当前缓冲区变为未初始化状态。
buffer = IO::Buffer.new('test') other = buffer.transfer other # => # #<IO::Buffer 0x00007f136a15f7b0+4 SLICE> # 0x00000000 74 65 73 74 test buffer # => # #<IO::Buffer 0x0000000000000000+0 NULL> buffer.null? # => true
源代码
static VALUE
rb_io_buffer_valid_p(VALUE self)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
return RBOOL(io_buffer_validate(buffer));
}
返回缓冲区是否可访问。
如果缓冲区是已被释放或在不同地址重新分配的另一个缓冲区(或字符串)的切片,则该缓冲区将变为无效。
源代码
static VALUE
io_buffer_values(int argc, VALUE *argv, VALUE self)
{
const void *base;
size_t size;
rb_io_buffer_get_bytes_for_reading(self, &base, &size);
ID buffer_type;
if (argc >= 1) {
buffer_type = RB_SYM2ID(argv[0]);
}
else {
buffer_type = RB_IO_BUFFER_DATA_TYPE_U8;
}
size_t offset, count;
io_buffer_extract_offset_count(buffer_type, size, argc-1, argv+1, &offset, &count);
VALUE array = rb_ary_new_capa(count);
for (size_t i = 0; i < count; i++) {
VALUE value = rb_io_buffer_get_value(base, size, buffer_type, &offset);
rb_ary_push(array, value);
}
return array;
}
返回从 offset 开始的 buffer_type 类型的值数组。
如果给出了 count,则只会返回 count 个值。
IO::Buffer.for("Hello World").values(:U8, 2, 2) # => [108, 108]
源代码
static VALUE
io_buffer_write(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 1, 3);
VALUE io = argv[0];
size_t length, offset;
io_buffer_extract_length_offset(self, argc-1, argv+1, &length, &offset);
return rb_io_buffer_write(self, io, length, offset);
}
从 offset 开始,将缓冲区中的至少 length 个字节写入 io 中。如果发生错误,则返回 -errno。
如果未给出 length 或为 nil,则默认为缓冲区大小减去偏移量,即整个缓冲区。
如果 length 为零,则将只发生一次 write 操作。
如果未给出 offset,则默认为零,即缓冲区的开头。
out = File.open('output.txt', 'wb') IO::Buffer.for('1234567').write(out, 3)
这将导致 123 被写入到 output.txt 中。
源代码
static VALUE
io_buffer_xor_inplace(VALUE self, VALUE mask)
{
struct rb_io_buffer *buffer = NULL;
TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);
struct rb_io_buffer *mask_buffer = NULL;
TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);
io_buffer_check_mask(mask_buffer);
io_buffer_check_overlaps(buffer, mask_buffer);
void *base;
size_t size;
io_buffer_get_bytes_for_writing(buffer, &base, &size);
memory_xor_inplace(base, size, mask_buffer->base, mask_buffer->size);
return self;
}
通过对源应用二进制 XOR 操作来就地修改源缓冲区,使用掩码,并根据需要重复。
source = IO::Buffer.for("1234567890").dup # Make a read/write copy. # => # #<IO::Buffer 0x000056307a25b3e0+10 INTERNAL> # 0x00000000 31 32 33 34 35 36 37 38 39 30 1234567890 source.xor!(IO::Buffer.for("\xFF\x00\x00\xFF")) # => # #<IO::Buffer 0x000056307a25b3e0+10 INTERNAL> # 0x00000000 ce 32 33 cb ca 36 37 c7 c6 30 .23..67..0